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Abstract

This paper considers the asymptotic evaluation of the double integral

g(x,y)e^^(^*y)dydx

n
for large k. The domain D is finite and the functions g end f are assumed

to be analytic in and on the boundary of D. Under these conditions certain

points (x,y) of D, called critical points, prove to be decisive. The asymp-

totic form of the double integral is given by the sum of asymptotic series

in integral and fractional powers of 1/k, and each of these series is deter-

mined by a neighborhood in D of a critical point. The method of this paper

is the essentially new feature. The problem of evaluating the double integral

asymptotically is reduced to the problem of evaluating a single Fourier inte-

gral asymptotically and known results for the latter case are applied.
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!• Introduction

In problems of the diffraction theory of optics as well as in many micro-

wave problems a solution is obtained in the form

wherein g and f are real functions and generally k is real. Physically, g(x,y)

is an amplitude f\anction, f(x,y) is a phase function and k - 2n/x, X being the

wavelength of some source which gives rise to the field represented by the double

integral. It is usually impossible to evaluate integrals of this form explicitly.

In the applications mentioned above one is interested in the value of the integral

for small wavelength, that is, large k . Hence in recent years attention has

been focused on the problem of obtaining an asymptotic series representation of

J in integral and fractional powers of l/k.

To obtain such a result Van Kajr5)en'- ^ applied the method of stationary phase,

originally developed for single integrals, in a purely formal manner. It is clear

from the formal uses of the method of stationary phase that the asyn?)totic series

representation of (1) is a sura of asymptotic series determined by the behavior of

f(x,y) in the neighborhood of certain critical points of the domain D of integra-

tion.

Recently Focke "- -' gave a rigorous treatment of the asymptotic expansion of J

in which he includes a number of types of critical points not previously treated.

s

He uses the notion of a neutralizer originally introduced b/ van der Gorput for

single integrals and extended by Focke to double integrals. The neutralizer is

a function of x and y which sejrves the p\irpose of isolating the vario\is critical

points so that one might determine the contributiji each makes to the asymptotic

* See, for example, the review articles by E. Wolf'- ^ and H. Bremraer'- -I and also

a recent thesis by J. Berghuis '- -^

.

**The case of small k is also of practical interest in optics. See the work of

K. Nienhuis and B.R.A. Nijboer, referred to by WolfM,
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evaluation of the double integral.

Both Focke and the present paper assume that the functions g and f of the

integral are analytic in and on the boundary of the region D. Braun'- -^ , using

the method of van der Corput, assumes only that f and g have a finite number of

continuous derivatives; he obtains explicit results only for some types of interior

critical points, and indicates the method to be employed for some boundary critical

points* The method and the resxilts are complicated but may be the best obtainable

on the basis of his weaker assumptions. A number of special results on the asymp-

totic evaluation of the integral J obtained by Berghuis '--'', Bremmeri- J, Siege! '•"'^-',

and Kontorovitch and MuraveV- J are germane. Mention should also be made of a

forthcoming report by N. Chako who is pursuing other methods of evaluating the

integral J asymptotically.

The present paper is designed to show that the asymptotic expansion of the

integral J can be reduced almost at once to the asymptotic expansion of single

Fourier integrals, that is, integrals of the form

(2)
J

h(t) e^^dt,

a

wherein h(t) and k are real. The asymptotic scansion of such integrals and of the

more general integrals

p

(3)
I

h(t) e^g^^^dt

a

has been extensively investigated. However, using the notion of a neutralizer and

integration by parts, Erdelyi^- -' has given a direct proof of the key theorem on

asyiT5)totic expansion of integrals of the foiros (2) and (3). The theorem of Erdelyi,

which deals with integrals of the form (2) and on which this paper rests, reads as

follows:
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Theorem. If (5f(t) is N timee continuously dif ferentiabie for

a < t < p, and 0<X<i,0<n.< l,then

?

I

e^''^(t-a)^"-^0-t)^"^(?(t)dt - B^(k) - A^(k) * 0(k"") as k -^oo,

a

whera

'^ S^O "' da •- -J

B (k) - r IW) 3in(n-^)/2 ^-n-, ,ikp ^ \l,.a)^-\i^)\
N

Ji^o "^ dp" '- -I

and (k~ ) may be replaced by o(k'' ) if X = ^ •= 1.

If the original integral (2) is to be considered over a larger domain a < a < p < b,

then, of course, it is to be decomposed into subdomains in each of which the above

theorem applies. Also if ^(t) is infinitely dif -t'erentiable within a < t < p then

A^(k) and Bj.(k) become infinite series and the order of the remainder becomes less

than any power of lA»

The method of this paper is certainly no more complicated than i'ocke's. More-

over it seems to have several advantages. The analysis showo how the behavior of

the contour lines of f(x,y), that is, the lines f(x,y) = const., determines the

critical points. These lines have immediate physical significeince. In diffraction

optics f(x,y) represents an optical distance from the source to a given point in

the image space along a ray whose first two direction cosines in the inage space

are x and y. It is therefore possible with the present theory to predict the types

of critical points from a knowledge of the rays and to interpret the contribution

of each critical point in terms of the behavior of rays. Secondly, the calculation

of the successive coefficients of the various asymptotic series arising from the

several critical points is sirT5)ler in the present case. Thirdly, the reduction of
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the problem of asymptotic expansion of higher dimensional multiple integrals of

the form (l) to that of single integrals is immediately effected by the method

of this paper.

2. Reduction of the problem to the single integral case

We consider integrals of the form

^(^^yj^ikf(x,y) ^^^

where g and f are real analytic functions, thus possessing derivatives of all

orders, at all points interior to and on the boundary of D, The boundary of D

is assumed to be piecewise infinitely differentiable, and such that if ^(x,y)

is a representation of any piece, 0. and are both zero at any point on the
X y

boundary. We shall take k to be real, though the simpler case of complex k is

actually included, as noted below.

Let m and M be the smallest and largest values attained by f(x,y) in D so

that m < f(x,y) < M for x, y in D. Then, for s > 0,

M+e

iU) e^^ - f e'-^6(t-f)dt.

Hence

//
(5) J -

I I
g e^^dxdy - g e^^5(t-f)dt dxdy.

By an interchange of the order of integration we obtain

(6) J - [ e^^
J

g 5(t-f)dxdydt,

*We write m-6 and M+e merely to emphasize that the behavior of f at the end-points

m and M is significant.
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(7) '^ '
i

«^^h(t)dt,

(8) h(t) -
J J

g(x,y) 5 J t - r(x,y)l dxdy.

Thus the problem of obtaining the asymptotic behavior of J is reduced to that of

evaluating the single Fourier integral on the right side of equation (7). The

same reduction is obviously possible in the case of integrals of several variables.

It follows from Erdelyi's theorem that there are contributions to the asymp-

totic expansion of an integral of the form (7) only from those critical values of

t, possibly including the end points ra and M, at which h(t) or any derivative is

discontinuous or at which h(t) or any derivative becomes infinite. In the case of

infinities the theorem gives the form of the expansion only for integrable algebraic

singularities of h(t). The case of a logarithmic infinity in h(t) will also be

needed and will be treated separately in the Appendix • Since for the h(t) of

this paper, namely (8) above, h(ra-e) » h(M+6) » 0, we need consider just those

valTies of t within the closed interval (ra,M).

It is intuitively clear - the precise analysis will be given later - that the

behavior of h(t) at any value t of t will depend upon the beha/ior of the contour

lines f(x,y) = t for t near and at t . Moreover, on the contour line f(x,y) t

only certain points and their neighborhoods will be significant. For example, if

at an interior point (x ,y ) of D at least one of the partial derivatives f and f

is not zero, then the contour lines through (x ,y ) and points in a small neighbor-

hood will be smooth and change smoothly with t, so that h(t) and its successive de-

rivatives will be continuous insofar as contributions to h(t) from this neighborhood

Independently, A. Erd^lyi has extended his theorem to the case of logarithmic singu-

larities of h(t) in (2) and (3). His results and the results of our Appendix overlap.

His resiolts appear in the Journal of the Society for Industrial and Applied Ifethema-

tics, March, 1956.
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of (x ,y ) are concerned. On the other hand, if (x ,y ) is a relative maximm

point of f(x,y), so that f and f are zero there, then h(t) will be zero for
X y

t > t insofar as contributions to h(t) from a neighborhood of (x ,y ) are con-

cerned, and h(t) may well be analytic for t < t . In any case h(t) will not be

analytic at t » t . In other words, the non-analyticity of h(t) at any value t^

of t will depend upon the behavior of the contour lines f (x,y) = t only in the

neighborhoods of certain points (x ,y ), called critical points, a fact already

observed in earlier formal treatments of the asyi:iptotic expansion of J. Similar

remarks apply to integrals of more than two variables when the curves f = const,

are replaced by surfaces or hypersurfaces f = const.

When k is con^jlex and < arg k < n, it is necessary to consider the behavior

of h(t) only near t = ra becaiise the contributions from other points are exponential-

ly small con^iared with the expansion obtained from t = m. Thus we evaluate the

integral expression (8) for h(t) near t = in and, on account of the presence of the

6-function, we need use only a neighborhood of f * m. The behavior of the contour

lines f(x,y) = const, in this neighborhood will determine the asymptotic expansion.

When -n < arg k < 0, we need consider only the behavior of h(t) near t = M.

Since, as is indicated by the preceding intuitive evidence, the significant

behavior of h(t) will depend upon its behavior in tte neighborhoods of certain

critical points of D we shall develop some new forms for h(t) which will be useful

in discussing its behavior in small regions of D. Let D be any (small) subdomain

of D and let us introduce a coordinate transformation, whose nat\ire will be speci-

fied later, from x, y to X, Y. Let f(x,y) transform to F(X,T) and let the product

of g(x,y) and the Jacobian of the transformation transform to G(X,Y). Then, letting

h (t) represent the value of h(t) over D , we have

j j
G(X,1h^(t) " I G(X,Y) 5^ t - F(X,Y)}. dX dY.

We now set
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F(x,y) - Fq(X,Y) + F^(X,Y)

and introduce the new variables

(9) 4 - F^(X,Y), >^ - Y(X,Y),

where T is at our disposal. Let ^>^($, y?) and /v (^, "J^) be the functions wliich

result from F. and G under this change of variables* Then

(10) h^(t) -
I I

^(4,>^) MMleJ t^C - ^^U,ri)[dE,dyi ,

J ^ a(4,>|)
j^ J

where D now represents the (C>^) domain corresponding to the original (X,Y)

domain.

We apply Taylor's theorem to the 6-runction in (lO) and expand around t = $

with - kT^ as the increment. Then

(11) h^(t) .f
) I

kl)I/^(^,^)|iM)i)5;U,r|)5(^>(t-Od4d.?
,

o

where 6 indicates the r-th derivative of 6(t-4).

It may be helpfvil towards understanding later steps if before transforming

further \ie examine the meaning of the equation just obtained. The right side is

a sum of terms of the form

(12)
J J

^ (?,>?) 6^^^(t-4)d4d>^ .

The double integral may be regarded as a repeated integral with respect to 5 and

then with respect to ~>7 . Hence the inner integral is of the form

(13) W(?,o) 6'''^t-«)dS,



where ^, (c) and ?p(c) are the least and greatest values of ^ for w * c in the

domain D . By utilizing a property of the 5-function'- -I we may convert this

integral to some fimction r((t,"^) and we must then consider

j "R(t,>^)dT^ ,

where v^- and ^p ^^ ^^® least and greatest values of >j In all the (4,^) for which

e, " t. For arbitrary t, >^, and v^p ^^^ ^® functions of t.

If we proceed to transform equation (11) in the manner indicated, we shall en-

counter some difficulty • Instead we shall reverse the order of integration in

(12). Thus

The diffictilty we seek to avoid is the following. Let us consider the term in

(11) when r = 1. We should now use the relevant property of the 5-function

b

f(x)5'(t-x)dx = f'(t) + f(a)6(t-a) - f(b)5(t-b)

Tiiis is obtained by integration by parts from the equation defining the 6-function,

namely, ,

I

f(x)6 t-x)dx - f(t).

4

When we apply the above property to the case r 1 in (13) we obtain

If we now integrate with respect to "i^ , the second and third terms may contribute

to the result becatise c must now be replaced by -r) . For r > 1, the diffic\ilties

in this procedure become considerably greater.
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4o ^^2^^^

-^2

at"'̂
Km' ,

^2(^)

If we apply this res\ilt to each term of (11) we obtain the result

^2(t)

Fonmila {ih) for h ( t) is basic in the subsequent calculations. Its merit

as opposed to that of formula (8) is that the path of integration is now t 4

instead of t - f(x,y), ftowever it will be convenient to introduce one or two

variations of it. By reason of the analyticity of f and g we can say that in

the neighborhood of any point (X ,Y ), wMch corresponds to (x ,y ), the following

absolutely convergent expansions hold:

This result is valid for t between 4-, and 4„. There will be a few cases in which

we shall want the behavior of h (t) at t - C^ or t - 4-. However, h (t) will be

singular at such values of t. But the behavior at t = C-i + or t = E.^- , which is

what will actually be needed later, is determined by the behavior of h (t) for

Hence we need not consider the value of h (t) for t •= 4t

or t « 5
2

•
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a(x,r) - f^ g^^.,n(x-x^)"(^-^o)"

(-1)

rl - p=0 q

^(^'.^ 'ZL ^p.^^-V'^o)'

Therefore

If we now introduce x,he variables ?,^ of (9) in place of X, Y and then write

t for C we shall have the integrand required in (ih), apart fl-om the Jacobian.

If, in particular, it should be the case in (9) that

(16) X - X^ - K^ii) n^iri) and I - Y^ - K-^U) >]2^\)

then (1$) becomes

and, if we replace 5 by t, we again have the form of the integrand required in

formula (lU), except for the Jacobian.

3» The behavior of h(t) at ordinary points of D

We propose now to characterize the critical points (x,y) of D, to show that

if f(x,y) « t contains the critical point then h(t) is analytic, and to prove

that if (x,y) is a critical point then the resulting non-analytic form of h(t)

is determined by an arbitrarily small neighborhood of (x,y).

Let us label as ordinary or non-critical, those interior points (x,y) of D

at which at least one of f and f is not zero and those boundary points at which
x y

the same condition holds, the boundary is analytic, and f(x,y) • const, is
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neither tani^ent to nor coincident with the bcundarj-. All other points or arcs

(in the case of coincidence of part of f(x,y) - const, with the boundary) will

be called critical points or arcs. We shall assvune that the number of these

crttical points or arcs is finite.

Now let t be any value of t such that f(x,y) - t does not contain any

critical points or arcs. Then there will exist a small neighborhood, |t-t
|
< 5,

such that for any t in this neighborhood f(x,y) - t does not contain any critical

points or arcs. Let

4 - f(x,y) and >^ - T(x,y),

where T(x,y)- const, is the family of orthogonal trajectories to the family of

curves f(x,y) = t. Since f(,x,y) is analytic in and on the boundary of D, f(x,y)

is analytic in a small neighborhood of each boundary point of D. Hence the ortho-

gonal trajectories Y(x,y) are defined even for (x,y) outside of but sufficiently

near D» The transformation from (x,y) to {KjV) is analytic, one-to-one, and its

inverse is also analytic.

Let us call D^ the subdomain of D containing all (x,y) for which f (x,y) = t,

where |t-t |
< 6, We may therefore write, in view of (8),

h^(t) > j G(C,>|)6(t-0|[f^d4dv^

\(t)

(18) V^> '^''^^'Ml'^'
Vi(t)

^

If the contour line f(x,y) = t is a closed curve (see Fig. la) then the

(C,")? ) -subdomain corresponding to the subdomain f(x,y; - t with it-t |
< 5 will
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'^.(t)

e=t

V,iX)

%(t)

^,(t)

Fig. la Fig. lb

be a rectangle in the (4, "0 )-plane with boiondaries "^
i^"*^^

^^^ ^o^^"* '"^^n

are horizontal line segments (see Fig, lb). If the contoiir line f(x,y) t is

an arc which cuts the boundary of D, that is, it is not tangent there, then the

subdoraain f(x,y) = t with |t-t |
< 6 will be a region in the (4,y^ ) -plane bounded

on the left and right by verticaj. line segments, and above and below by arcs

^-(t) and 'y\^{t)f which are analytic since the boundary of D is analytic at the

points of intersection. In either case h(t) is an analytic function of t. If the

contour line f (x,y) = t sho\ild consist of several disjoint cvirves the same argu-

ment applies to each.

The family of orthogonal trajectories will exist and yield the necessary analy-

ticity and one-to-one correspondence between (x,y) and (4,"»7) only in an (x,y)

domain where f / 0. Hence it may be necessary to break up the arc or closed

curve f(x,y) = t i.ito a sum of arcs with some arcs containing the points (x,y)

at which f (x,y) = as interior points. Then the domain D, will be come a svm

of domains and the integral (8) will be a sum of integrals. To treat the transfor-

mation from (x,y) to C?,"*^ ) for a subdomain containing an arc of f(x,y) t^ on

which f « 0, we introduce a rotation of coordinates which makes both f^ and f / 0.

The integral (18) becomes a sum of integrals each of which is analytic in t.
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solating arc

the contour line f(x,y) " t (see Fig. 2). Let us again consider a small interval

of t-values, |t-t
| < 5. We shall isolate this critical point (x ,y ) by one or

more arcs such that for any value of t in this interval f(x,y) - t will be decom-

posed into two parts, one lying within a neighborhood of (x ,y ) bounded by these

arcs and another lying outside.

We require that these arcs be

analytic , Then h(t) will con-

sist of two integrals, one of

the form (l8) which will be

analytic and another, h (t),

given bv some integral of the

form (R) but extending only

over those (x,y)-values lying

within the region bounded by

the arcs isolating (x ,y ).

We shall see later that h (t) is non-analytic for t = t . Moreover, it follows

that the non-analytic form of h (t) is independent of the choice of the arcs

^xo,yo)

f(x,y) = t

.y)=t„

^(x,y)=-t ^(x,y)=t

isolating arc

Fig. 2

We have therefore shown that the values of t at irtiich h(t) is not analytic

are limited to those values of t for >riilch f (x,y) » t contains one or more critical

points (x,y). Further, if t is indeed a value of t at which h(t) is not analytic,

then the non-analytic part of h(t) in the neighborhood of t - t is determined by

an arbitrarily small neighborhood in D of the critical point (x,y) which lies on

f (^y) t^»

«
~~ " " ~ ' ——^______

The precise choice of the shapes of these arcs will be specified in considering

the various types of critical points. We need to be careful later only to observe

the analyticity condition to be imposed on these arcs. The deoompoaiticn of the path

f(x,y) t into two parts will be needed to treat only some of the critical points

to be considered later.
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li. Contributions from critical^ non-stationary boundary points

Let \is use the term non-stationary point for points (x,y) at which at least

one of the partial derivatives f and f is not zero. We have just seen that a
X y

non-stationary point (x ,y ) is ordinary if it is an interior point of D or if it

is a boundary point for which the contoxu: line f (x,y) » const, through it inter-

sects the boundary'- and if the boundary is analytic at the intersection. There may,

hov;ever, by non-stationary boundary points which are critical.

k'l We consider a non-stationary boundary point (x^,y^) such that the

boundary is analytic at (x ,y ) and such that the contour line f(x,y) * t through

(x ,y ) is tangent to the boundary. Let us suppose that ^^^^0*^0^ ^ ° ^"*^ *"^*

the equation of the boundary curve is ^(x,y) C. We shall first show how to

choose new coordinates X, Y such that for the transform F(X,T) of f(x,y), F^^ or

SF/dS. at (X ,Y ) ^ 0, Fq^(Xq,Yq) - 0, the boundary (^(x,y) - becomes the X K)

axis, and the positive direction of the X-axis points into D.

Since the contour line f(x,y) » t is tangent to the boundary at (x^,y^) we

have at (x ,y )
o'

f f
« 7

We make the linear transformation

X - X au - mOf v
O ^y a - m^

1 ,

with the choice of a and c such as to make the positive u-axis point into D.

Since

f(x,y) = foo * fio^^-^o^ * ^^y-^o^ ^ ^20^^-^o'^ " ^ll^^-^o^^y-^o^
*'"

>

This transformation is suggested by FockeW^ p. 38.
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then, if 7(u,v) denotes the transform of f U,y)

,

(19) r(u,v) = Fqq . t^qU . r^^u^ . r^^u.

^(u,v) - ^3_qU + ^20"^ + ^^^uv + ... .

To make the boundary curve of D the X » axis, we introduce X, Y through

Y - V .

We invert these equations to obtain u and v and substitute in (19X Then

F(X,Y) . F^, . F,oX . ?^/ * F,,XY . F^^^^ * - > ^0 ^ ^'

We shall now use formula (lU) to calculate h (t) in the neighborhood of

X * 0, Y = 0. However where we formerly decomposed F(X,Y) into F_ + F, , we shall

find it more convenient in the future to write

F(X,Y)

and iPt 4 in (9) be the new F„. This means merely that we must replace t in (lUJ

idei

(21) ^ - hc^- ^02^ 5

then the transformation (9) from X, Y to 4, '>! is defined by

2 1/2
Y - C cos VI _ ^ ' sin n

^10 (V^

v;e now use (15) ana {lU) to obtain for t > F^^

It follows from (20) that du/dY = at u = 0, v - 0. See, for example, Courant, L -I,

We suppose here that F ^(0,0) ^ 0. This means that the curvature of the contour

line through (0,0), the line for which F(X,Y) " *_ " ^nnt '^°^^ "o* coincide with

the curvature of the boundary at the point (0,0). The case of F^^ = could be

treated by the method of the next section.
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(?2) h(t.F,J.£ ^
r^ (t-Foo)'/' .._„ - ^ (^-Foo)'^'^'

o' 00'
r-0 3t

n "10^02

UU „ ^- ^— v-"^

10 02

=''-'
^"''\t&°-^-^'-^'^'^

lines in D and therefore
o

\i^-^QO> ' Csee Fig. 3).

The integral in (22)

vanishes unless \i is even.

Also F is zero if

2p + q < 3r in view of

the choice of 4 in (21).

Hence Fig. 3

2in (t-Fpo)"'*^/^ mr
(^.^.^.i/g) |Xlr2^^ h rt.F ^ - "T" T" '^^ r* l>m-^r-\-l/<::;^Al

10 "02'

X 2(m+r-K)

£) ^ °X-p,2m+2r-2\-q ^r,p,q

The application of Erdelyi's theorem now shows that the contribution of this

critical value F^^ of t to the asymptotic expansion of J is
ou

00
ikF^ ^r^^p

'00 2 "" 2"' 2ra m+r Xl(in+r-X- ^) 1 X 2(m+r-X)
^'""^ L 'l^^^^TT-—TT? E |:^ ^K^r^^rrJT-rr Vp,2™.2r-2..q^r,p,q

10 '02

We have put IFq^I ' in (2U ) because it will be seen shortly that (2U) is then

applicable to other cases with small modification.
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V/e now consider the case where F^^ < and F^^ > (J'ig. li) . The domaLn D^

lies to the right of I = 0. We

can, however, consider a domain

D which surrounds the point X ,
o o

Y , e.g., the domain ABCDE. In

this domain h (t) is analytic for

aU t near t because at lease one
o

of f and f is not zero at
X y

(x ,y ) and (x ,y ) is an interior
0*0 o'-'o

point of D . Then the h (t) which corresponds to the path in D itself is the
^ o o o

difference of an analytic function and the value of h (t) for the path lying

in BCD. But the domain BCD occupies the same position with respect to the axis

X = as the case already treated. Hence the final result is the same as (2U)..

Fig. U

When F-^ > and F „ < 0, the part of h (t) wliich contributes to the asymp-

totic expansion is zero for t > F^^ but, for t < F^, (23) is altered by having

(t-F,^)"^V2 ^^ a/2
^gpia^e^j by -(-l)"'(F^-t)'""'^/^ and (-^-o)^^^ respectively

00 02'00' ^'"^
02

Thus (2h) is unchanged apart from ei"^™'"^/^^/^ being replaced by e^"^'"*^/^^/^.

The same residt holds for F^^ < and F^^ < 0»

U.2 We consider next the type of critical non-stationarj- boundary point

(x ,y ) such that the contour line through (x ,y ) coincides with the boundary

over a finite length (see Fig, 5). The coordinates X and I are chosen as in the

case of U.l, However because the contour line and boundary will possess the sane

curvature at (X ,Y ) we have

F(X,Y) - FpQ * F^^qX * F^/ * F^^XY * F3/ ^10 ^ °'

We choose C and >] thus:
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and consider first the case F^q > 0. Then h^Ct) - for t < F00* For t > 0,

we use (l5) and (iM to obtain

(25) h(t-F^^)
r-0 at^

J
\-0 n-0

:x^
10

''"& £ =X-n.u.a^...a^^^0 ^-P»t^-q ^>V,<i

Consequently there is a contribution

to the asymptotic expansion of J,

which because h(t-F,_^) possesses con-

tinuous derivatives of all orders,

will consist of the zeroth and posi-

tive integral powers of 1/k. However

the coefficients of this expansion

(Xo;<o^

Fig. 5

F(X,Y)=to

will depend upon the length of arc over which the boundary of D and the contour

line f(x,y) - t coincide. They will therefore not be given explicitly,

U.3 We consider next the contribution of a corner in the boundary of D to

the asymptotic expansion of J. More precisely state, we consider a point {\>7q)

on the boundary of D at which the direction of the tangents to the boundary

changes dlscontinuously but such that the direction of the tangent to the

contour line f(x,y) - t through (x^jy^) does not coincide with either the right

or left-hand directions of the tangents to D at (x^,y^).

We shall determine a change of variables from (x,y) to (X,Y) so that the

bovindary of D at (x ,y ) will fall along the upper half of the T-axis and along

the right half of the X-axis, so that the domain D will consist of the region

I > 0, T > near X^ - 0, T^ - 0.

Let the boundary arcs on either side of {\>7q) be given respectively by

^i^tj) - and Y(x,y) = 0. Moreover, since the tangent to D at (x^jj^) changes

discontinuously, we haw at (x^,y^)
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i 0,

Since we presuppose that the tangent to the contour line f(x,y) « t does not

coincide with either of the above tangents, we have also

(26) i and

'x ^y

i 0.

We consider the linear transformation

y - y - CU + dV,

a b

c d
1,

and choose a, b, c, d to satisfy the conditions

a T + c T -
X y

b 9r + d 0,

and make the positive u-axis and positive v-axis lie along the tangents to D

at (x ,y ), In terms of u and v, then, the expansions of <j({x,-y) and T(x,y) are

^(u,v) - ^^^n + ^20""' r^iuv . ^^2'

T(U,V) - Tp^V * fgQU * fj^^uv * Tq^v

and

(27) ?(u,v) - foo f^QU * fp^v * f^QU *

wherein f^^ y* and T^^ j^ because of (26).

To make the boundary arcs of P near (x^,y^) coincide with the X- and Y-axes

ws let

^inX - ^lo^ * ^9n^'10' 10 '20'

V ''Ol' * ^20"
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VJe invert this transformation and substitute in (27). Then

F(X,T) = Fqo * F^qX . Fq^T . ... , F^^ / 0, F^^ f 0.

Y
Let

Then the paths of integration are

shown in Fig. 6. Accordingly we

irnke the transformation

X - ^ cos'^ ri , Y = |i- sin- >|

10 01

(X ,Y )
^ o'

t<

.t>F00

Fig. 6

Now h (t) » for t < F^-, because the contour lines f(x,y) « t lie outside of
O C)U

D . For t > F„^ we use equations (17) and (111) to obtain
o 00

n

00 ^r r 2(t-F._) 00
.

Li 2\+l . 2|j.-2\+l
|j. V- cos V| sm ^

-vo

(28)
7~ y G, , F 6y\ ,

^0 ^Q ^-P»t^-^-q ^»P»q ^

Since F "0 for p q < 2r we obtain
r,P,q

CO m (t-F-.)"''*^ m+r ,,, ,.,— — 00 r— Xl(nn-r-X.)i

o* °°' & & —TS^- & 4*i F^'-^-l

, m+r-X

& ^ °X-p,in+r-X-q ^r,p,(
p^U q=

Hence the contribution of the point (^^,7^) to the asymptotic expansion of (1) is

00 ik^oO* T^ ('""^^ m m.r ,.. ... X m.r-V
(29)

feb
'^

?<) fe) F^*V:^-^^ fe) ^ X-p,m+r-X-q r,p,q •
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When F-ifs < ard F„, > 0, the behavior of the contour lines near X^ - 0,

y - is shown in Fip. 7. The domain D^ is still in the first quadrant sur-
o o

roundinp (0,0). Let us add to the domain D^ the domain D^^ shown in the figure.

Then the boundary of the domain D^ • D^ is the X-axis, This boundary is analy-

tic and the contour lines cut the boundary. Hence hCt-pQ^) taken over D^ + D-^^

is analytic for all t near t - Fqq . If we now subtract from this hCt-pQ^) the

h (t-F ) taken over the contour lines lying in D, , we shaDl obtain the correct
o 00 ^

form of h (t-F ) for paths in D^^, The treatment of h^Ct-pQ^) in D^ is precise-

ly the same as that just given. Hence (28) and (29) obtain for this case too.

When F,„ < and F^, < the paths t < F^^ as given in Fig. 6 are inter-

changed. Hence (29) gives the result for this case too. Likewise the case

F > and Fqj^ < yields the result (29),

Fig. 7

U.U We consider as the final case of a critical non-stationary boundary

point an (x^,y^) where the direction of the tangent to the boundary of n changes

discontinuously and one part of the boundary coincides with the contour line

f(x,y) - const, through (x^,y^). As in the case treated in (U.2) we shall obtain

a series cf powers of -whose coefficients depend upon the domain of integration

and will therefore not be given.
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5. Contributions from interior stationary points

We consider next interior points of D at which both f^ and f^ are zero.

5.1 Let the point (x ,y ) be a relative minimum or maximum of f(x,y). By

a simple rotation of coordinates we may write

(30) F(X,Y) - Fqo * F2o(X-X^)^ * "^oZ^^'V^ * — *

In a small neighborhood D of (X ,Y ) the contour lines F « const, are closed

curves surrounding (Xg,!^) (see Fig. 8). We shall use (l?) and (lU) to calculate

h (t) in D . Suppose, firstly, that F ^ > and F^^ > 0. Then let

FCXY) = t

- X

Fig. 8

X - X„ " ^1/2 cos

^20

80 that

(31) K' F2o(X-X^)' > Fo2(^-^o^'

NOW h(t-FQQ) - for t < F^q. By (17) and (lU) obtain for t > F.00

(32)

^ r .^'^ oo ^ Nix/2 cosN_sin^l_j:V-

r E. Vp,li-X-q ^r,p,q ^

B^ q-O
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The integral vanishes except when X and |j.-X are even. Furthermore, in view of

the choice of ^ in (31), F.
r,P,q

for p + q < 3r. Hence for t > FOC

^(^-^oo)
(^20^^02

)

TTc

00 2rn (t-F^^;

S^o ho ""•
x-o

k m+r-x
^20 ^02

(33)
^. 2r-t-2m-2x

r

& ho '^'2\-p,2r.2ir.-2\-q ^,p,q

Consequently, by Frdelyi's theorem, the contribution of this critical point to the

asymptotic expansion of J is

ikF
00

1^20^02'
T7? £

7 ('"^^^ 2m m+r (\- ^)l(m+r-X. ^) I

(3U)

k-
*

2r*2m-2X

rO \«=0
\ jm+

^20 ^02
r-X

p»0 ql^T
'^2X-p,2r+2m-2X-q ^r,p,q

When Fp„ < and F„^ < C, the result is the rame as (33) except that t > F^-p

and t < F_„ are interchanged. Hence we obtain (3U) with the sign reversed.

2
5.2 Let the point (x ,y ) be a saddle point of f (x,y), so that f^f.^ - f^ < 0.

The coordinates X, Y are chosen so that (30) holds. We assume, firstly, that

Y

X-Xo=-d

Fig. 9a
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FpQ > and F^g < 0« Then we shall evaluate h^(t) between X - X^ - -d and

X - X - d (see Fig. 9a). The path of integration is given by

spending 'to C>0, ^-0, andC<0. Let yj

we shall see in a moment that we need consider only that part of the path which

lies in the first quadrant to evaluate (lU).

Fig. 9b

Using the notation of article 2, let us consider the integral

C35)
J J

i^ G(X,Y)P^(X,Y)6(t-F )dXdY.

If we transform from X, Y to C, >^ in accordance with (9) and write the resulting

double integral as a repeated integral with respect to y| and then 4 we obtain

let K(4) denote the inner integral. Then this double integral becones
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2

£(t-OK(4)d4

^(t)

We see therefore that each term of (lU) can be regarded as caning from a term

such as (35). If however xe evaluate (35) over a path symmetrical with respect

to both the X- and Y-axes, such as an hyperbola of Fig. 9a, and if we use the

expansion (l5) for the first three factors of the integrand, then we need retain

only those terms in the expansion which contain even powers of both X-X and I-Y •

Moreover, for these terms the integral (Hi) is four times the integral taken over

the path in the {K>^) plane (see Fig. 9b) corresponding to that part of the hyper-

bola which lies in the first quadrant. Hence we obtain for (lU)

(36)

We consider therefore integrals of the fora

In the domain of Fig. 9a, Y - Y is positive in the first quadrant and hence we

writ.
^_^

/f20^'-«
° / - ^02
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d

„,n / ^^"(W^ - «""'^
^n

T^/^Hd)/ ^20

where T -
^~^oo*

^^'^ ^^"^^ ^^ ^^^ Heaviside unit function, i.e., H(T) - for

T < and H(T) - 1 for T > 0.

By integration,

d2-l(F,,d2.T)"-l/2
2^_^

^in,n
"

2in + 2n " SSTST ^^m,n-l
f°r n > 1,

derivatives of all orders. Hence it may be neglected because it will not con-

tribute to the asymptotic expansion of J, Continuing the integration we obtain

I - (-l)"(2n-l)(2n-3)... 1 ^ ^
m,n ( km+i;n; ( 2m+i;n-i! ) . . . ( 2mV^ ) ^ \,o *

Further,

m,o ^20 20 "'"' >0 —

Once again the first term may be neglected insofar as contribution to the asympto-

tic expansion is concerned, so that

T - (2'"-l)(^-3)...l /*
T

Sn,c 2m(5m-2)... 2 m "^0,0

Since „ -,2

1 ,
d > (d^ - T/F,,)^-^^

^0,0 " ^17^ ^°s -[TTiTr—17?
F20 1^1 ^20

and since the numerator in the logarithmic factor will not contribute to the

asymptotic expansion, the significant part of I^ ^ is given by
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(m-fn)l?nF2j

Therefore the relevant part of h^Ct-F^^,) i£

U Y" ::!_ ^ ^" (-1)'' r-m- r-r-w (t-F^^)

?To at'" tMD Il^b ^^02^"^02^^ v-..^, .^-..20

p-0 q'=0

Since we can ignore continuous functions with continuous derivatives we can

replace

^ (t-F,,)^*^loglt-F,,|

by

if p + q < 3r, so that the significant part of h^Ct-F^^) is
/ISO, F -Oifp+q

r,p,q

T
00 2m (t-F-^)" m+r (>- i.):(m+r-\- hi

(37) 2X 2Ll2f.-2>^r

—

p=0 h^
°2\-p,2r+2m-2X-q ^r,D,q *

Use of Theorem h of Appendix A now shows that the contribution to the asymp-

totic expansion of J is the same as (3U) multiplied by i.

This result remains unaltered if F^q < and F^^ > 0»
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5.3 Let the point (x ,y ) be a double point, that is f f - f « Oi

In this case we choose X, Y so that

F(X,Y) - Fqo . F20^^-^o) * F30^^-^o) * ^21^^'h^ (^'''o^
* ^^U-^n^'-^y

We assume first that F^^ > and that F^- > 0, and choose

(38) ^ - ^20(^-^0^^ * W^'V^' "^ - ^ - ^o

We shall evaluate h (t) along ^ = const, from X - X - -d to X - X d. For
o 00

to positi-se ones (see Fig. JD),

t>F0Q

Fig. 10

If F, 2 j' we can apply a further transformation, X-X^ - X - X^, Y-T^ « Y - Y^

^12 —
- «,— (X - X ), to eliminate the F-,r, term. However this is not necessary in

3Fq^ o i^

the cases considered tere.



However, the argument given in Section 3.2 concerning symmetry of the path of

integration can be applied here. In this case we see frcm the symmetry of the

domain of integration with respect to Y Y that we nee m retain only terms

which involve even powers of X - X in the expansion (15) and multiply the re-

sult by 2, If we then make the change of variables from X, Y Uj l,Yi and use

(lU) we obtain

CO r .^ CO 00 r,^\T-F2oV|')^^-'^/-'

(39)
^"° ^^ i ^^ ^-'^ ^^03 ^03

v.'e therefore have to evaluate integrals of the form

T)

Retaining only terms which contribute to the asymptotic expansion (cf. section

5.2), we find that

(- j)U-3)!(m + ^- ^)ir2o

/ 2
"-^^^

j
(T - F^^ ri

') dn ]

'^m,3s+2

Now d is independent of T. Hence

J
(T - F20 V|

) d>| -

J

(T - F2Q n ) dn

aside from a term which is continuous and has continuous derivatives for values

of T bounded away from 0. We consider therefore the right-hand integral.
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For T >

i

(T/F,^)^/^ ,,, 00-2/3 /^''20^ -2/3 /""
^ _2/3

(T-F^qVI ) d>,

-J
(T-F2o>| ^) ^^ M ^^-^20^^ <^^

o o , 1 /?
(T/F^o)"/'

Make the substitution ^j = VV^ sin 6 in the first integral on the right and

y\ • y T/Fpy sec e in the second. Then''

n

-2/3 0,-1/6 / , -/ .

(cos '^ + sin '^^ @ cos '^ 9) d©

20

(-|)i3n^/^T-^/^
.^

1>. 1/2
(- j)l 21-20

For T < 0, we let >| a / -T/F2Q ' tan 9 to show that

n

r ,.2n ,,,-1/6 7 ,. (- |)i jl/^n^/^

(-T)-^/6 .

The integral for J o -i
may he dealt with in a similar way and we obtain

2) dv^ . -^
-b ^^^' '^20

(T-^20n )
dv^ - ,1,1 , 1/g

'°^ T>0

^^^^ ^^20

The first terra in the integrand on the right may be integrated by a standard

integral leading to Gamma functions and the second by a standard integral in-

volving Beta functions. The relationship P(x) P(-x) - —I^H— may be used to
xsinnx

transform intermediate results.

Before letting the upper limit become infinite we subtract the term (-F _r^
)""

from the integrand. This term does not involve T and hence does not contribute to

the asymptotic expansion. However, it causes the integral with the infinite upper

limit to converge.
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apart from terms which do not contribute to the asymptotic expansion. Hence

- for n - 3s + 2,

where [ ^ ] is the largest integer not greater than ^ .

Therefore the significant part of h^(t) is given by
\^ ^ - l

^
00 gP 00 CO (>.- ^)i{\t^)i\t-?^\ ^

.^H(t.F^).(-i) H(F,,.t) r r^.x.p.
p-O q-U

-^^-q^r.P*'^
'

where terms in which n - 3s+2 are absent. Also, the properties of F imply

that only those terms in which X + -- n > 7r/6 are present. Hence

^^(^-^00^

J J (X. £).(^-Mi 3"^"^

" 7^ & f>"l^ & r,.r-4):Fi:W..i)/3-X
1^-^00

1

(UC) ^ r.u „,. ^ .-u ^--r- ^;;r2o r^^

m

r H(t-F^o) * ^-^) "^'OO-^)^ E r G2K-p,m-3X-q^,p,q

where terms in which m » 3s+2 are absent.

Consequently, the contribution to the asymptotic expansion of J is, by

Frdelyi's theorem,

(Ul) 2X
"'3r-3X

* ^0 U ''^••-P»»^3r-3V-q Pr,p,q »
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where terms in which m = 3s+2 are absent,

m+2in J r ™+2 -, II in J r "1+2 -, 1

When Fj,^ < 0, F^. > we must replace e v j ^7 ®

vmen Fp_ > and F < we only alter the sign of (Ul).

^fThen Fp^ < and F„^ < we alter the sign of (iol) and replace

in J r in+2 -, .
1 I in J r "1+2r m+2 -, 1 L in J r "1+2 -. 1

6. Contributions from boundary stationary points

Ve consider in this article stationary points which lie on the boundary of D.

The boundary is assumed to be an analytic curve in the neighborhood of (x ,y )

,

:x,y)

has a maximum or minimum relative to all neighboring interior and boundary points

of n. To treat such a point our first step will be to make the boundary of D in

the neighborhood of the point the axis of coordinates and, at the same time, to

reduce the second-degree terms in the Taylor's expansion of f(x,y) around the

point to a sum of squares (see Fig. 11).

Let 5f(x,y) » be the equation of the boundary in the neighborhood of (x >y ).

We first introduce the linear transformation

X - X - ah + bk
o

(U2)
y - y - ch + dk

a b

c d

and choose a, b, c, d subject to the condition that f^(0,0) vanishes. Hence

f(x,y) and 0(x,y) become

*Focke seems to have omitted the factor l'^ in his formula (153). Otherwise his

result for this case agrees with our formula (iil).
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(2«(h,k) . (2f^Qh . (^i^^v . gr^/ . Qf^^hk . (/^^ * ... .

We may also choose a and c so that the sign of (?^, (0,0) is the sign of l7(x,y) in

D, that is, so that the positive h-axis points into D.

If ^j^(0,0) is not zero it is possible to make a further transformation*

^ ^(^10^02^ - 9^o/)

k = U^n^^9n^ ^ <^.n^ >d '"^01 20 10

^,where d -
9'j^o^02

*
'^Ol'^PO*

^° ^^ ^° ""^^^
^k ^ *^ ^^ leave the form of f(h,k) i

altered. Suppose (x ,y ) is a relati\'e minimum; then f„ > and f . > 0, so

thsi .1 / C

.

(U3)

and

As a corsequence of this traripfomation

^(^"^^
- ^00 * ^20^' * V' * -

9f(E,Ic) . (y,^F + ^^Ji^ - ^,^h k + ^^S^10' '20'

Now <2f(K",Ic) «= is the orig-

inal boundary curve. Let

(UU) X - QliK,^), Y = k.

If ve solve the equations (UU)

for K and K in terms of X and

y we obtain

F - Y.

We substitute in (U3) and obtain

boundary of D

Fig. 11

This transformation is suggested by Focke [6], p. U6.
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(U5) . F(X,Y) . Fqo ^F^/ . F^/ * ... ,

where F^^^, ^9n» ^no> **• ^^® "®^ coefficients and where we have changed the

functional symbol to accord with earlier notation.

The above sequence of transformations has transformed the original boundary

to X - while achieving the form (U5) for F(X,Y).

We now proceed as in Section 5.1 except that X » 0, Y » 0, and the limits

of integration are from - ^ to J. , We obtain for this case

(•U6) 2r-2^-t-2m

^ ^0 ^2r^n'-2ti-P,2n-q ^r,p,q

where [p] is the largest integer not greater than p.

Therefore the corresponding asymptotic expansion is

(W) '?^*" 2^

P^^ q=0p-Cr q=0 ^'2r+m-2^-p,2ji-q ^r,p,q
*

If (x ,y ) is a relative maximum, then F^,-, < and F-^ < and the sign

of (U7) is a-lso reversed.
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6.2 We suppose next that (x^jy^) is a saddle p'^int of f(x,y) so that

f f - f < 0. We introduce the same sequence of transformations used in
XX yy xy

Section 6.1 to obtain the form (U5) for F(X,Y) while making the boundary curve

the Y-axis* (see Fip. 12). We ^-appose first that F^q > and Fq^ < 0«

We now follow the treatment of the interior saddla-pcint as in fection 5.2

except that the paths of intepration lie only in the first and fourth quadrants,

Hence we may neglect only those terms in the Taylor's expansion of

^'^1 . G(X,Y)F!f(X,Y) (compare (35)) which contain odd powers of Y. Instead of

(36) we obtain

^(^-^oo^

(i..8)

-'Eh
r=0 9t^ 4

^^-^oq)
1/2

z. r V
(^20 1

nPi-1/2

^^02 ^"^02^
T=UT

(^^)
T7T

|o£'-p>^-^'^>p'^'^

Fig. 12

boundary of D

M-In this saddle point case it no longer follows that d / 0. VJe assume that d ^ 0}

this assumption means that the boundary of the domain D does not coincide with either
2 2

asymptote of the family of hyperboles f2„(x-x^) ••

^il^^'^Q^^y-yQ^* ^o2^^""^o^
" ^°"^^*
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Intesrals of the type appearing in (US) were already considered in Section

5.2, Evaluation of (UB) and the application of Theorem h of the Appendix leads

to (h7) except that (F2oFo2^''^ ^^ replaced by \^20^r)2^^^^ / ^' "^^^^ result

7. Remarks on the method

For the benefit of those readers who may have been following some of the general

theory of asymptotic solution of Maxwell's equations being developed at New York

University we shall relate this theory to that of the present paper. A pirime ob-

jective of the general theory has been to derive the asymptotic form of time har-

monic solutions of Maxwell's equations (or the scalar second order hyperbolic

equation) from conditions imposed on the coefficients of the differential equations

and the initial and boundary conditions. Of course these conditions would be im-

mediately related to the physical conditions of the problem. To derive this asymp-

totic series as well as to calculate it this theory uses the concept of the pulse

solution of Maxwell's equations. By determining the behavior of the pulse solution

a function of x, y, z, and t, in the neighborhood of each of its singularities with

respect to t one can write down at once by means of a general theorem the asymptotic

series solution of Maxwell's equations'- -J, Given the problem of obtaining the asymp-

totic form of the integrals considered in this paper, one can write down the corres-

ponding pulse solution, proceed to detennine its behavior in the neighborhood of

its singularities, and then apply the general theoran to obtain the asymptotic

form of the integrals. There is, of covirse, a contribution to this asymptotic

value from each singularity of the pulse solution.

The present paper, as has been seen, throws the problem of evaluating the double

Fourier integrals asymptotically back to the problem of the single Fourier integral

and the utilizes Erdelyi's theorem. The function h(t) of the present paper is pre-

cisely the pulse solution of the peneral theory though it is not obtained in the
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same way as in the general theory, floreover, as this paper shows the singularities

of h(t) are the critical points of the double integral. Insofar as theory is con-

cerned, the present paper is more general in some resjaects and less general in

others with respect to the kinds of critical points it can handle. However the

present paper is decidedly more efficacious in calculating the asymptotic series

which corresponds to each critical point. In the present method one proves more

readily that the contribution of each critical point to the asymptotic value of

the double integral is determined by a smaJl neighborhood of the critical point

and by using the form (lU) for h (t) one obtains more expeditiously the actual

asymptotic expansion contributed by each critical point.
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Appendix

In this appendix we consider the asymptotic expansion of a Fourier integral

in which the integrand has a logarithmic singularity. The analysis runs along

lines similar to those followed by Erd^lyiL'-l,

Firstly we discuss

I -
I

e^*(t-a)^'-'- gj(t) log(t-a)dt.

where < X < 1, 5l(t) is N times continuously differentiable for a < t < p, and

T^\?) ' for n - 0, 1, ..., N-1.

Let

X^(t) . e^^(t-a)''"^ log(t-a)

^"^
ico

\^^^ '
f Vi^^) '^^

>

t

where the path of integration is defined by u • t + iy (y > 0) . The integral

then converges absolutely.

Repeated integration by parts of I gives

A
N-1

nO
Now

(Al) I - il 9f^''^(a)X ,(a) Wx (t) gr^^^t) dt.
nO J

a

00 «• inn oo

by repeated interchange of the order of integration. Hence

K- inn 00

^*^^ \(^^ ' TK^TJT
^^^^

J

y"'^«''^(t+iy-a)^"^iog(t*iy-c-a)dy,

'O

Therefore
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lka+ X- inCn+^-l) oo

Since

(A3)

Thus

where

00

zl =

'o

00
I

zJ >
J

y" e •' log y dy

'o

I
y^ e-y dy,

o

i

1

,z »-y

00

y^ e "^ lop y dy - zi T(z)

o

Y(z) - 51_ .

zl

The properties of the Y-function are well known. For example,

Y(z+1) - X^ * Y(z)

and

Y(C) = -Y,

where y is idler's constant.

Employing (A3) we obtain

ika+ »• iTi(n+X-l)

(Ail) Ija) - ? —r-^
(n^X-2)I

J 1 j.„ . ^pg k ^ Y(n ^ X-2)
"

(n-l)l k"*^--^ ^ 2

Also

|t*iy-a|^'^ < (t-a)^"^

and
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2 |l/2

|log(t+ iy-Gc)| - log(t-a) + log Jl -^—n \ + i tan'"^ /-
(t-ar '

^'°-

X/2
I
2/\

< 9- n + log(t-a) + log ^1 + y v/w i

1 , 2v^/2< , . . log(t.a) * -J^-p^ .

Hence, from (A2),

-
1

Therefore

(A5)
j

x„(t) 9^^\t)dt . O(k-N).

Combining (Al), (AU) and (a5) we obtain:

Theorem 1

If P(t) is N times continuously differentiable for a < t < p,

^^'^^p) - for n - 0, 1, ..., N-l,and < X < 1^ then

I
e^^*'(t-a)^"V(t) log(t-a) dt

n-0

Similarly we can prove:

Theorem 2

^ ^ ika+
J-

in(n+\)2- in(n+\) ( \

-—^^-Sltlhni} ^i„-iogk. Y(n..-1) /"^a) > Oi^).

If (2(t) is N times continuously differentiable for a < t <

(il^^Ma) - for n « 0, 1, ..., N-l^and < ti < 1^ then
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a

^ ^ ikp+ 2" i"(n-t^)

- r • ("-^--^)^
JT(n.^x-l)-log k- ^i.U^")(p). 0(V

When (jl does not vanieh at either end of the integral the introduction of

a neutralizer enables us to deduce the asymptotic expansion from the preceding

repulte. Since the uee of the neutralizer has been described by Erdelyi we shall

quote the theorem obtained. It is

Theorem 3

If 0(t) is N times continuously differentiable for a < t < p and

0<X<1, 0<n<lj then

e ^''^(t-a
)''"•'( p-t)'^"V(t) log(t-a)dt

., , ika+ jr ±n{n+\)
p- e ^ (n4>.-l)i

,n

I
in - logk . T(n*X-l)l ^ j(p-a)^-^ CKa)

, ikp-t- jr in(n-ti)

* r «* (n.n-Dl

k=0 nl k"*^^

• ^^(p-a)^-^ m) log(p-aJ^ * Oi^)*

Finally, we consider what happens when the logarit^imic singularity occurs

at an interior point. We restrict attention to

e^^* 9l(t) lop(t-c) dt,



where a < c < and lcg(t-c) is defined to be log|t-c| + in when t < c. From

Theorem 3j

B

I
e^^^ 0(t) log(t-c) dt

„ , ikc+ ^ in(n+l) (

iin - log k + T(n)U^"\c) + OCk"^);

c
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